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Statistical MIMO Radar

Abstract  Inspired by recent advances in multiple-input multiple-output (MIMO) 
communications, we introduce the statistical MIMO radar concept. Unlike 
beamforming, array radar, or STAP, which presuppose a high correlation 
between signals either transmitted or received by an array, the proposed 
MIMO radar exploits the independence between signals at the array elements. 
Whereas correlation-based array techniques are capable of providing degrees 
of freedom for spatial filtering, they have no bearing on the effects of target 
scattering. Radar targets generally consist of many small elemental scatterers 
that are fused by the radar waveform and the processing at the receiver to 
result in echoes with fluctuating amplitude and phase. In conventional radar, 
target radar cross-section (RCS) fluctuations are regarded as a nuisance that 
degrades radar performance. The novelty of statistical MIMO radar is that it takes 
the opposite view, namely, it capitalizes on target RCS scintillations and glint to 
improve the radar’s performance. MIMO radar utilizes multiple antennas at both 
the transmitter and receiver. It can be applied in monostatic or bistatic modes. 
The antennas at each end of the radar system have to be sufficiently separated 
such that the target provides uncorrelated reflection coefficients between each 
transmit/receive pair of antennas. We demonstrate that the MIMO radar greatly 
improves detection and estimation performance due to the absence of target 
fades. Specifically, statistical MIMO radar overcomes target RCS fluctuations 
by averaging over many decorrelated channels between transmit and receive 
antennas. Subsequently, the received signal is a superposition of independently 
faded signals, and the average SNR of the received signal is more or less 
constant. This is equivalent to converting a Swerling case I RCS to a Swerling 
case II, but without the loss of time. Moreover, MIMO spatial diversity also 
eliminates the deep interference nulls in the elevation coverage due to surface 
multipath reflection. 
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Motivation

• Radar targets provide a rich 
scattering environment.

• Conventional radars experience 
target fluctuations of 5-25 dB.

• Slow RCS fluctuations (Swerling
I model) cause long fades in 
target RCS, degrading radar 
performance. 

• In statistical MIMO the angular 
spread of the target backscatter 
is exploited in a variety of ways 
to extend the radar’s 
performance envelope.

Backscatter as a function of azimuth angle, 
10-cm wavelength [Skolnik 2003]. 



The S-MIMO Concept

• Statistical-MIMO radar offers the potential for significant 
gains:
• Detection/estimation performance

• Resolution performance

• Here, we focus only on detection performance

• Our results question the common belief that one should 
maximize the coherent processing gain.

• With S-MIMO a very sparse array of sensors transmits a set 
of orthogonal waveforms. 

• By using this approach, we create many "independent" 
radars, that average out target scintillations. 



Signal Model
• Point source assumption dominates current models used in 

radar theory.

• This model is not adequate for an array of sensors with large 
spacing between the array elements.

• Distributed target model

Many 
random 
scatterers



Signal Model (Cont.)
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Phased Array Radar
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 Phased array radars consist of closely spaced sensors. 

   The gain between each transmitter receiver pair is the same.

 Transmitted waveform is 
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S-MIMO Radar
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 In S-MIMO radar, the inter element spacing is large. The gain between every 
   transmitter receiver pair is different.

 The received signal is given by

                 vec ~ CN ,

 Each 

E
t t t

M
r Hs n H 0 I

 



transmitting element transmits one of M orthogonal waveforms.

 By matched filtering the received signal at each sensor  with each of the 
   transmitted waveforms we can reconstract

                jir t       

 Therefore, instead of coherent gain of , we created  independent radars.

ji i ji

E
s t n t

M

MN MN



The Radar Detection Problem
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 The radar detection problem:
     :  Target does not exists at delay 
     :  Target exists at delay 

 Assume that all the parameters are known. The optimal detector is the LRT 
   detector, and it
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 It is possible to compute the probability of detection as a
   function of the probability of false alarm, and i
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The Invariance Detector
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 Assume access to a vector  that contains  samples of 
   the noise process.

 Note that is the ML estimate of the noise level.

 The optimal detector whose performance depends only on
   SNR
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 This test statistic is very intuitive. It normalizes the UMP
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Example: Miss Probability
• Assume a system with four receiving and one or two transmitting 

antennas, M=2, N=4, and the probability of false alarm is 1e-6
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Example: ROC
• The following figure depicts the ROC. SNR=10dB.
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Concluding Remarks
• S-MIMO is a new concept for radar systems.

• This concept utilizes spatial diversity in order to overcome 
target scintillations.

• At 90% probability of detection, the proposed system 
outperform phased array radars by 5 dB, which is equivalent 
to almost twice the range.

• The S-MIMO radar can be shown to have superior 
performance in range estimation and resolution as well.
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